Quantitative Homotopy Theory in Topological Data Analysis
نویسندگان
چکیده
This paper lays the foundations of an approach to applying Gromov’s ideas on quantitative topology to topological data analysis. We introduce the “contiguity complex”, a simplicial complex of maps between simplicial complexes defined in terms of the combinatorial notion of contiguity. We generalize the Simplicial Approximation Theorem to show that the contiguity complex approximates the homotopy type of the mapping space as we subdivide the domain. We describe algorithms for approximating the rate of growth of the components of the contiguity complex under subdivision of the domain; this procedure allows us to computationally distinguish spaces with isomorphic homology but different homotopy types.
منابع مشابه
A ug 1 99 8 Spaces of maps into classifying spaces for equivariant crossed complexes , II : The general topological group case
Spaces of maps into classifying spaces for equivariant crossed complexes, II: The general topological group case. Abstract The results of a previous paper [3] on the equivariant homotopy theory of crossed complexes are generalised from the case of a discrete group to general topological groups. The principal new ingredient necessary for this is an analysis of homotopy coherence theory for cross...
متن کاملApplication of Graph Theory: Relationship of Topological Indices with the Partition Coefficient (logP) of the Monocarboxylic Acids
It is well known that the chemical behavior of a compound is dependent upon the structure of itsmolecules. Quantitative structure – activity relationship (QSAR) studies and quantitative structure –property relationship (QSPR) studies are active areas of chemical research that focus on the nature ofthis dependency. Topological indices are the numerical value associated with chemical constitution...
متن کاملResearch Summary
I am active in three areas of research: computational algebraic topology and data analysis, directed homotopy theory and concurrent computing, and homotopy theory, differential graded algebra and toric topology. Together with my collaborator Peter T. Kim, I am combining topological and statistical methods to aid practitioners in analyzing large, high-dimensional data sets [11, 7]. Independently...
متن کاملSpaces of Maps into Classifying Spaces for Equivariant Crossed Complexes, II: The General Topological Group Case
The results of a previous paper on the equivariant homotopy theory of crossed complexes are generalised from the case of a discrete group to general topological groups. The principal new ingredient necessary for this is an analysis of homotopy coherence theory for crossed complexes, using detailed results on the appropriate Eilenberg–Zilber theory, and of its relation to simplicial homotopy coh...
متن کاملOn the convergence of the homotopy analysis method to solve the system of partial differential equations
One of the efficient and powerful schemes to solve linear and nonlinear equations is homotopy analysis method (HAM). In this work, we obtain the approximate solution of a system of partial differential equations (PDEs) by means of HAM. For this purpose, we develop the concept of HAM for a system of PDEs as a matrix form. Then, we prove the convergence theorem and apply the proposed method to fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Foundations of Computational Mathematics
دوره 13 شماره
صفحات -
تاریخ انتشار 2013